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LOG ancl l“~ccdforward (lmtrollers
for the Deep Space Network Antennas

W .K. Gawmnski, C.S, R~cho, and J .A. Mellstrom

AIM ract. ‘1’hc controller development and the tracking performance evaluation

for NASA’s Deep Space Network antenna arc prcsentcc]. A trajectory

preprocessor, 1 .QG (1.incar Quac]ratic Gaussian) controller, fecdforward

c o n t r o l l e r ,  find their c.ombinntion arc drsigmc], bu i l t ,  analymc],  ancl test cd,

The antcmna exhibits nonlinear behavior wlicn the input to the antenna ancl/or

the d e r i v a t i v e  o f  this input cxcce,cls  the imposccl l imi t s ;  f or  slcwing  ancl

acquisition c.ommancls, these limits are lypically  v i o l a t e d .  A  t r a j e c t o r y

prcprocesor  was designed to insure that the antenna behaves linearly, just

to prevent nonlinear limit cycling, The  e~t imator model for the 1 @G

cent roller was idcnt ificcl  from the data obtaincc] from the fic.ld test. l!asccl

on an I.QG balancecl  representation, a reducccl order 1.QG conf rol ler  was

obtaincc].  ‘1’hc fccdforward  controller aucl fhe combination of the I.QG ancl

fccdforward  controlkw were nlso inves t i ga ted .  “1’hc  p e r f o r m a n c e  o f  the

con(rollcrs  was cvaluatccl  with the tracking errors  (clue  to  fo l lowing a

trajectory) and the disturbance errors (c]uc to the disturbances acting on

antenna). ‘1’hc LQG controller has good disturbance rejection properties, and

satisfactory tracking errors. ‘1’hc fcmlforward contro]lcr has s m a l l  t r a c k i n g

error, hut poor disturbance rejection properties. ‘J’IIc combincc]  I.QG a n d

J’ccdforward conlrol]er  cwhihits  s m a l l  t r a c k i n g  e r r o r s ,  a s  well as goocl

dislul”hncw l’cjcci~on p]opcrtim, IIowcver Ilie cost o f  t h i s  perfornmncc  i s

found in the complexity of the controller,

‘J’hc authors are with the Jet Propulsion I aboratory,  California ]nstitutc of
‘lcc}~no]ogy, Pasacicna, CA 91109
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I.

‘1’}113 NASA IIeep Space
Ih-opulsion I aboratory, consist

IN’I’ROIILJC”l’ION

Network (IISN) antennas, operated by the Jet
of several antenna types and am located at

Goldstone (California), Canberra (Australia), and Madrid (Spain). “~hc JXIN
serves as a communication tool for spat.c exploration. The 1> SS- 13 antenna, a
new-generation 34-n~ bearn-wavcguidc  antenna, is shown in Fipj. 1. IWture NASA
missions will include low-~ ;larth-orbiting satellites, which rqui re

significant] y higher tracking rates (up to 0.4 clcg/see), when compartxl to the
cleq space missions (0.004-0.01 clcg/see). “lhus the servos for the antennas
require upgrading in order to follow commands with the required precision.
Some upgrade options are presented in this paper, and are illustrated with
simulation results and with field nmwlrcmcnts,

The existing PI controllers, depicted in l~ig.2, satisfy the requirements
for deep-space X-band (8.4 -GIIz) tracking, l;or a higher tracking rate, a

si rnplc and reliable choice is the addition of a fcedforward controller,
described in Refs. [5], [6]. The model-based, 1,incar Quadratic Gaussian (J .QG)
controllers are an alternative to fccdforward controllers. The 1,QG design
approach for the DSN antennas is presented in Refs. [2], [3], [4], and [6].
This paper addresses the design and the implementation issues of the
fccdforward  and 1,QG controllers and compares their performance.

The controllers under consideration were designed for a linear plant.

However, the antennas can exhibit non-linear behavior (limit cyc]ing)  due to
limits i rnposcd on the antenna input. In orclcr to emure proper pcrformancc, a
trajectory preprocessor is introduced.

in the case of unpredicted commands or severe environmental conditions,
the drives could be overloaded and damaged, In order to prevent this from

happening, limits arc placed on the input rates and accelerations of DSN
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antennas. Bccausc of these imposec] limits, the antenna dynamics bccomcs non-

linear (for the antenna commands exccccling these limits). “1’hc antenna
tracking commands are usually within these limits.
often challenged by antenna slewing commands and by
slewing commands exceed these limits, this usually
cycling. 1’0 avoid limit cycles, a slewing controller,
the tracking controller, was implemented. In order to

However the limits are

wind disturbances. When
results in antenna limit
which is different from
usc the same controller

for both tracking and slcwing modes, the commands for the slcwing, moclc must
bc modified so that they do not violate the rate and acceleration limits, yet
still move the antenna at the highcs{ rate possible. This command
modification can be performed with a trajectory preprocessor located in the

control system (see Fig.3).
of the command as described

The basic structure of
feedforward controller of a

The preprocessor limits the r~te and acceleration
below,

the trajectory preprocessor is clerived from the
INN antenna [5], [6]. ‘l’his controller has been

proven to have good tracking performance. For the preprocessor purposes, the
controller is simplified by removing its integral part, and by replacing the
linear part of the antenna model with the integrator. The nonlinear part
(i.e., the rate and acceleration limiters) remains untouched.

A block diagram of the trajectory preprocessor is shown in Fig.4a, where
SAT denotes saturation, and R1. denotes rate limiter. Consider a trajectory
r(t), and let vn,~X and an),X be the maximum rate and acceleration which arc
allowed for an antenna command. 1 n this figure rf is the preprocessed

trajectory, e = r-rf is the preprocessor error, k is its gain, u is the rate
command, UL is the limited rate command, ancl u~ is the limited acceleration
and rate command. The first step in verifying the preprocessor is to check
its performance for the liftecl limits on rate and acceleration, i.e., for the
linear case (see I~ig.4b).  Hence onc obtains:

u=; +kr-krf, ;if == u (la)

and from the above one obtains ~~+krf== ~ -f kr,
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rf=: r (lb)

if the initial conditions for r and r~ are the same, It shows that if the
command does not violate the rate and acceleration limits, and if the initial
conditions are the same, the preprocessed trajectory is identical to the

original one.

In the nonlinear regime, the equations for the discrete-time

preprocessor are as follows:

a) input, u(i):

u(i) =k(r(i)-r~(i) -t v(i)),

where v(i) is the command rate the ith instant,

b) input saturation:

{

v for u(i) > vn),x
ulfi) = -v~~ for u(i) < -vnUx

u(i) othtv-wiw

(2a)

(2b)

c) input’ rate limiter:

{

u~(i-]) + Tan,,x for uL(i)  > u~(i-l) + Tanwx
u~(i) == u f(i-l)-Tan,~x for t4Ji) < uf(i-l)-lbn,,x (2C)

uL(i) otherwise

d) integration of u;

rf(i)  = r~(i-l)  + lii~(i), ( vf(i) == 14~(i) ) (2d)

where vf(i) is the rate of the preprocessed trajectory at the ith instant. In
the case of violated limits, it is difficult to analytically evaluate the
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performance of the preprocessor, but it can be done by simulating commands
typical for the DSN antennas. Typical commands arc: step command (slewing an
antenna), rate offset , trajectory acquisition, and mcd iu m rate azimuth
trajectory (up to 0.4 dcg/see),

First, the preprocessing of the step command is illustrated. A step

command as in Fig.5a, solid line, is preprocessed for the maximum rate
v“,,, =0. 4 deg/see, and the maximum acceleration an,,x == 0,6 deg/sec~ which is
“acceptable” to a controller, The preprocessed trajectory is shown in Fig. 5a,
dashed line. Its rate does not exceed Vn,,, (see l’ig.5b, dashed line), and its
acceleration does not exceed amax (see Fig.5c, dashed line),

For the rate offset test a command with the constant rate of 0.3 deg/sec
is preprocessed for the initial position of the preprocessed trajectory
identical to the initial position of the original trajectory (r~(o) ==r(0)),
and the zero initial rate of the preprocessed trajectory v~(0) = O, while the
initial rate of the original trajectory is nonzero, i.e., v(o) =0,3 deg/sec
(Fig.6). The original and preprocessed trajectories shown in solid and dashed
lines, respective] y, demonstrate that the original trajectory is quickly
approached by the preprocessed one, For the case where both initial
conditions @osition and rate) of the preprocessed trajectory are different
than those of the original trajectory (r~(0) =1 cleg, v~(0) == O deg/see, and
r(0) = O deg, v(O) ==0. 3 deg/see), the preprocessed trajectory is shown in Fig.6,

dash-dotted line. The original trajectory is acquired with the maximum speed
and acceleration, and the difference between them approaches zero.

Finally, a trajectory as shown in Fig.7a with maximum rate 0.3 cleg/sec is
preprocessed for Vn,,, = 0,4 deg/see, an),, = 0.6 deg/secz, where the initial
conditions (r~(O,J ==22 cleg, v~(0) = O deg/see) differ from the original
trajectory (r(O) ==24 deg, v(O) =100 dcg/see). The preprocessed trajectory is
shown in the same figure with clashed line. After acquisition the maximal
difference between the original and the preprocessed traj ectorics is less
than 0.1 mdeg, see Fig.7b, which is much smaller than the noise level in the

antenna position error.
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111. 1.QG CONI’ROI.I.I”;R

An LQG controller for the antennas, see Fig. 8, consists of an estimator,
PI gains, flexibIe mode gains, and the trajectory preprocessor. The
identification of an estimator gain determination, and the reduction of the
controller, are described below,

A. Identl~cation  of the Estimator Model

The antenna model used for the design of the estimator has two inputs
(azimuth and elevation rates) and two outputs (azimuth and elevation
positions), see Ref. [4], [6], However, the cross-coupling between azimuth
input and elevation output, and elevation input and azimuth output, is much
weaker than the coupling between azimuth input and azimuth output, and
elevation input and elevation output (compare Figs.9 and 10). This fact
allows one to ignore the cross couplings and to use two separate antenna
models (for azimuth and elevation). This approach simplifies the design and
implementation of the LQG controller. The following test was simulated to
justify this approach. An I.QG controller A was designed for the plant without
cross-couplings, and an LQG controller B was designed for the plant with
cross-couplings. The resulting controllers A and B were applied to the plant.

The performances of both controllers were nearly identical.

The analytical models for the DSS-13 antenna such as those in Ref. [6]
cannot be implemented as an estimator due to their uncertainties (such as
finite element model structural mass, friction, or gearbox stiffness), In

order to design a model-based controller, an antem~a model must precisely
mimic the antenna dynamics. For this reason, an antenna model was identified
using field measurements, see Ref. [12], The field measurements were taken as
follows. While the antenna was moving with a constant rate UO, a random

signal u was injected. Then the input un, ==uO+- u and the output y~=yO+y were
measured, where y. and y were responses to UO and u, respcctivcl y. The

6



... ,

signals u and y were determined by dctrending u,,, and yn,,
series data were passed through a Harming filter to prevent

during a Fast Fourier Transformation, see Ref. [1],

The magnitude of the transfer function, IT@ 1, and the
were estimated using the filtered and detrended input u and
of 8192 samples each

Next, the time
spectral leakage

coherence, ~~,
output y vectors

(3)

where ~ is frequency in Hz, PuU@ is the power spectral density estimate of

u(t), PYY@ is the power spectral density estimate of y(t), and PuY@  is
the cross-spectral density estimate of u(t) and y(t). The magnitude of the
transfer function
Figs.9a,c.

The identified
space form triple
azimuth model is

and the coherence are plotted versus frequency in

azimuth and elevation models were obtained in lhe state-
(Ai}Bi}CJj  i=az, or el. In a future analysis only the

presented in detail, and the subscript i is dropped to
simplify notation’ (details of the elevation model and cross-coupling models
can be found in Ref. [12]). In this model the state vector x is of dimension
n, the input u is of dimension p, the output y is of dimension q, and the
matrices A, II, C are of dimensions nxn, nxp, and qxn, respectively.

A model is identified using the identification software SOCIT

(Systen~/Observer/Controller Identification Toolbox), see Refs. [8], [9]. A
state-space mode], (A, b’, C), is identified given the input-output data,
sample period, and the number of observer Markov parameters. The order of the
system was chosen to be 24, based on the system Hankel singular values. Next,
the state-space representation was transformed into balanced coordinates, so
that the matrix A was in a diagonally dominant form, with 2x2 diagonal
blocks. The diagonal
while the off-diagonal

elements of the block represent the system darnping,
elements represent natural frequencies at those modes.
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The identified transfer function plot is pre.sknted in Fig.9b.

The antenna model includes an integrator (note that the input is the
rate and the output is the position). Thus, some of the system poles are at
zero. The SOCIT software, not developed for the systems with poles at zero,
consistently identified a model with all non-zero poles. Nevertheless, some
of the poles were located close to zero. This feature was corrected by
shifting the close-to-zero poles to zero. Also, the identified model showed

overdamped modes. This was readily corrected by reducing the modal dmnping in
the balanced representation.

The signals were measured with a sampling frequency of 80 Hz. Since the
transfer function of the identified model should reflect the antenna dynamics
for frequencies below 10 Hz these signals were oversampled. The excess data
in the oversampled signal was used to reduce noise intensity through

averaging, In this way, a typical signal record of 8192 samples was reduced
to 1638 samples.

B. Balanced LQG Controller

The design of the balanced LQG controller for the DSN antennas was
described in detail in Refs. [4], [6]. The closed-loop system with an LQG
controller is shown in Fig. 8, with the estimator state-space triple (’ ,B, C),

the estimated state of flexible part x~f, the control input u, the output y,
the estimated output y., the command r, the servo error e, the process noise
v of intensity V, and the measurement noise w of intensity W, Both v and w
are uncorrelated V= E(WT),  E(ww7]  =1, E(wT) = O, E(v)= O, E(w) = O, where E(.) is
the expectation operator. The triple (A ,Zl, C) is stabilizable and detectable.
The identified plant model was augmented with the new state (integral of the
error), th~~s its order is increased to n =25, “~he task is to determine the
~t~n~l-~>~~ ~r gain (]:C) and esti mater gain (ke) s~]c,h that the performance index

(J),
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J=E

is minimized, where Q
minimum for J is obta

03
J 1(xTQ.v +UTU)dt (4)
o

is a positive semi-definite state weight matrix. The
d for the feedback u= -k~,  where the gain matrix

kC =WSC is obtained from the solution S of the controller Riccati equation
[10]

(5a)A’rSC +S@-SCi3WS,+  Q=O

The optimal estimator gain is given by k. =S~iY,  where Se is the solution of
the estimator Riccati equation

Ase -+ S@~-SeOCSe + V= O. (5b)

Denote a diagonal positive definite matrix M =diag(PJ,  i =1,...  ,n, pi> O.
A state-space representation is LQG balanced if

&=Se=M (6)

In this case ~i) i=l,..., n are the LQG characteristic values of (A,B, C), see
Jonckheere and Silverman [7], and Opdenacker and Jonckhecre [11] for weights
Q= CrC, V==MW,  and Gawronski [3] for a general case of weights.

Let (A,B, C) be a state-space triple of the open-loop antenna in the
Moore balanced representation. For a diagonal weight matrix Q==diag(@~,

i=] ,... ,n, the solution SC of (5a) is as follows [3]

and for a diagonal V=diag(viI~, i= 1 ,... ,n, the solution S. of (5b) is

(7a)
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It is shown in [3] that for flexible structures the Moore and the LQG
balanced representations are approximately collinear, i.e., such that the
transformation 7 from the first to the second requires only rc-scaling of the
components

T~diag(tlIz, tzlz, . . . . tnl~, ti = (SCiscJ1/4 (8a)

and the approximate balanced solution is a geometric average of SC and S.

.—
(8b)

a result useful in the controller

C. Reduced-Order Controller

reduction.

controller is equal to the size of the plant, itAlthough the size of the
is crucial from an implementation point of view to obtain a controller of the

smallest possible dimension that preserves the stability and performance of
the full-order controller. In order to ensure the stability of the closed-
loop system, the open-loop system (plant model) cannot be excessively reduced
in advance. Therefore, controller reduction becomes a part of the controller
design,

For a flexible structure, such as a DSN antenna, an LQG balanced approach
produces a stable reduced-order controller, for which the reduction index

ranks the importance of the controller states, It combines the
closed-loop characteristic values of a system,

The plots of the index ai for azimuth and elevation are shown
In the azimuth axis case, the index Ui is small for ia10 when compared to ~i
for is9, Thus the azimuth axis controller order is chosen to be 9.

(9)

open- and

in Fig.11.
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The state-space representation (A,B, C) of the reduced azimuth axis
estimator is given in the appendix, along with the controller gains kC = [kP,
kij k~], and the estimator gains k..

IV. FEEI)FORWARD CON~ROLLER

The tracking accuracy of fast moving objects can be improved if a PI
controller is augmented with a feedforward loop, see Refs. [5], [6]. A block
diagram of the PI controller with the feedforward loop is shown in Fig. 12. In
this block diagram, G, K, and F denote transfer functions of the antenna’s
rate loop, PI controller, and feedforward gain, respectively; r is a command,
y is the output (elevation and azimuth angles), e is the tracking error in
azimuth and elevation, and u is the plant input.

In the absence of disturbances, perfect
the feedforward gain F such that GF==I,

antennas, this condition is satisfied in
for F=S, since for these frequencies
approximated with an integrator G=l/s.

In the
tracking (e=O) is obtained for
case of the

a low frequency
the plant transfer

Deep Space Network
range of OS@ Hz
function G can be

The DSS- 13 antenna PI controller, with proportional gain
integral gain k i =0.5 in azimuth and elevation, was investigated.
loop transfer function (azimuth command to azimuth encoder) for a

kP=0.5 and
The closed-
system with

and without the feedforward gain is compared in Fig. 13. The figure shows that
for frequencies up to 1 Hz the system with the feedforward gain has better
tracking properties when compared to the system without feedforward gain

(good tracking properties are characterized by the unit value of the
magnitude of the transfer function),

V. LQG-AND-FEEDFORWARD CONTROLLER

The controller performance is usually tested for tracking errors when
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following a command, and for servo errors due to wind disturbances. Therefore
the tracking and disturbance rejection properties have to be traded off. The
fecdforward controller for the DSN antennas has good tracking properties,

confirmed by both simulations and
during the slewing maneuver is
observed. However the feed forward
ac t ion  is insufficient, and its

field measurements. Also, its performance
satisfactory, since no limit cycling is
controller ability to compensate for wind

disturbance rejection properties are
equivalent to those of a PI controller. On the other hand, the LQG controller
is effective in suppressing wind induced vibrations, but has weaker tracking
properties.

In comparing the properties of feedforward and LQG controllers, one can
conclude that by combining the two it is possible to improve both the
tracking and disturbance rejection properties. The properties of a
combination of the LQG and feexlforward  controllers were derived for a system
configured as shown in Fig. 14. In this block diagram, G is the plant transfer
function, GY is the estimator transfer function from y to y., Gw is the

estimator transfer function from u to y., GUY is the estimator transfer
function from y to u,, and GU is the estimator transfer function from u to
Ue. In determining the feedforward transfer function F, note that good
tracking properties are required for low frequencies only (in our case for
frequencies up to
For the system
preprocessor equal

1 Hz). For these frequencies, GY~O, and GYzI, thus y~=y.
as in Fig. 14 (assume transfer function of the trajectory

to 1, i.e., r=r~):

e=r-y~, y==Gu, u =Fri-Ke +G&uu  + G@uYy,  y.= GYUU + GYy. (lo)

From these equations one obtains

H- GYUF-GYGF
e  ‘Il”Tqmm-iiX’

The servo error is eliminated

r, H=]  +’G&U  +G@UYG, (11)

(i.e., e=O) if the numerator of the above
transfer function is zero. This is true for the following feedforward
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transfer function:

I +G@U i- G&yG
F=——~;+~-----  . (12)

For the low frequencies ~< 2 Hz) the following is true: G= 1/s, G@u is
constant (G@u =kU, w h e r e  kU is the  dc gain of G@U), GW20, GY= 1, a n d

G&UYsku~.  Thus F in Eq,(12) represents a differentiator

F=kf$, km= 1 +-ku-t-kuY (13)

with the gain k~~ = 1 +kU +kUY,  called the feed forward gain.

The result (13) was testcxt as follows, The LQG controller was configured
as in the previous section; the dc gains were ku =2.23, kuY ==-0. 58. The maximal
tracking errors of this LQG controller with a feedforward gain were observed .
in the simulations for
Fig. 15. The minimum
km=] +ku i-kUY =2. 65.

different values of the gain km, and are shown in
tracking error is achieved for the feed forward gain

VI,

The position error
acceleration limits, and

PERFORMANCE EVALUATION

for a trajectory which approaches antenna rate and
the position error due to disturbances, are used as

performance measures of the antenna position controllers, The performance of
the LQG and feed forward controllers for the DSS - 13 antenna (Fig. 1) was
evaluated through simulations and tested in the field. For this antenna the
rate limit is set to 0.36 deg/see, and the acceleration limit is set to 0.2
deg/sec2. The acquisition
measured. At time O sec
is at position 22 deg.
case, and the preprocessed

and tracking of the trajectory shown in Fig.7a was
the spacecraft is at position 24 deg, and the antenna
The trajectory preprocessor was activated in this
trajectory is shown in Fig.7a, dashed line,
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For the PI controller (kP =0.5, ki == O. 5) the tracking error is shown in
Fig, 16a,b. Figure 16a shows the transient tracking error due to the initial

step. Figure 16b is a zoom of the same tracking error plot in Fig. 16a which
gives a higher resolution view of the magnitude of the tracking error. The

maximal value of the error is
required accuracy of 5 mdeg.

The acquisition of the

28 mdeg (see also Table 1), which is beyond the

trajectory for the same PI controller with a
feedforward gain and without a trajectory preprocessor is shown in Fig. 17a.
After acquiring the target, the maximal tracking error is 2.5 mdeg (see
Fig, 17 b). However, there are poorly damped oscillations present in these data
plots.

The performance of the LQG controller with

measured and is shown in Fig. 18. The maximal
in the case of the feedforward controller, but

the PI gains kp ~12, ki=10 was

tracking error is 3.7 mdeg, as
the flexible deformations were

much more effectively damped by the LQG controller,

The LQG controller with the PI parameters kP = 12, ki =10 and a feed forward
loop (for the feed forward gain kK=3) was tested. The results are shown in
Fig. 19. They show a very small tracking error of
suppression that is similar to the LQG controller.

The accuracy of the antenna model was tested

1,5 mdeg, and flexible

by comparing measured
line) and simulated (dashed line) data in Fig.20 for the case of the

mode

(solid
LQG

controller with PI gains kp =12, ki =10.  The figure shows good agreement
between the two data (which would improve in the absence of encoder faults).

The disturbance rejection properties of the presented controllers were
simulated. The use of simulations instead of field measurements is justified
for two reasons, First, it is difficult, if not impossible, to repeat the
same disturbance” conditions in the field so that fair comparisons could be
made. Secondly, the accuracy of
experimentally. The disturbance white

the antenna model has been proved
noise, w, with standard deviation 0.005

14



ctcg/see, was added to the input u. This noise intensity is approximately
equivalent to a 30 mph wind acting on the antenna. The simulation results
(rms error, mdeg) are shown in the second row of Table 1. The results show
good disturbance rejection properties of the LQG and LQG-with-feedforward
controllers, when compared with PI and PI-with-feedforward controllers. Note
the good coincidence of simulated and measured results for the PI and the LQG
controllers. For these controllers the signal-to-noise ratio was high. On the
other hand, for the feed forward, and the LQG-with-feedforward controllers the
signal-to-noise ratio was low. Hence this signal was engulfed in noise, and
the evaluation of tracking error from the noisy measured data could only be
approximated within the noise level.

Table 1. Tracking and disturbance errors (mdeg)

PI FF LQG LQG+FF
Tracking error (maximal) 28.6 0,7 3.6
Disturbance error (rms) 3,2 3.6 0.4 ;::
Measured error (maximal) 28.0 2.5 3.7 1.5

VII, CONCLUSIONS

The new controllers were’ designed and tested to improve the DSN antenna
tracking performance. The measures of such improvement are the reduction in
position error for a trajectory which approaches antenna rate and
acceleration limits, and the reduction in position error due to disturbances.
The results of running the new control algorithms on the DSS - 13 antenna show
an improvement in the performance of the LQG, feed forward, and LQG-with- i

feedforward controllers over the existing PI controller. On the other hand,
the feedforward controller achieves good performance while remaining simple

(avoids the complexity of the estimator and pre-processor), but its ability
to suppress disturbances is limited. The LQG controller alone shows greatly

improved disturbance rejection properties. However, the most i reproved
performance was observed for the combination of the LQG and feedforward
controller, It had very small tracking and disturbance-induced errors.
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The trajectory preprocessor was introduced as a necessary part of the
implementation of the LQG controller, so that tracking and slewing could be
accomplished with one algorithm. In current operation, the PI controller
requires separate modes for tracking and slewing due to the limit cycling
which occurs in the latter. However, the preprocessor can also be implemented

with the existing PI controller to combine tracking and slewing into a single
mode.
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APPENDIX, CONTROLLER DATA

Estimator triple (A,B, C), where 0=[~ Cf], and gains kP, ki, kf, k.

‘1 -0.01955 0.18642-0,03930 0.12127 0,01232 0.08334-0.07823 -0.09326
0 0.95945 -0.20718 -0.00937 -0.00554 -0,00758 -0.00154 -0.00485 0.00974
0 0,20718 0.97580-0,00508-0.00194 -0.00415 -0.00051 -0.00222 0.00489
0-0.00937 0.00508 0.85543-0.49999 -0.00046 -0.01739 -0.00905 0.01219
0 0000554 -0.00194 0.49999 0.85764-0.04976 0.00209-0.01013 0.02416 I
0-0.00758 0,00415 -0.00046 0.04976 0.91026-0.38398 -0.014ti  0:02037
0 0.00154-0.00051 0.01739 0.00209 0.38398 0.92094-0.00771 0.01805
0 0.00485 -0.00222 “0.00905 -0.01013 0.01464-0000771 0.93139 0.33443
0 0.00974-0.00489 0.01219-0.02416 0,02037-0.01805 -0.33443 0.83555‘ - I

W= O. OIXIO.231 1.785-0.395 0.485-0.211 0.395-0.055-0.230 -0.479]

C p = [ l o o o o o o o  o ] ,

Cf=[ogxl 41
kP=12,
ki=lO$
k =[17.163 13.586 6.300 1.829 4.929 1.869 0.231 -3.299]
k~=[O.9955  -0.1098 0.2217-0.1710 0.2090-0.1000 0.1682 0.0131 -0.0785]
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